Ionic mobility in stuffed-silica minerals

نویسنده

  • Alison Jones
چکیده

Using a combination of dielectric spectroscopy and atomistic computer simulation techniques, the dynamical behaviour of loosely bound cations in the stuffed-silica minerals nepheline, yoshiokaite and ß-eucryptite has been investigated. The investigation has been extended to include the feldspar minerals albite, K-feldspar and anorthite. The low-frequency dielectric properties of all of the minerals have been investigated from room temperature to 1100 K. At each temperature, the dielectric constant, conductivity and dielectric loss were determined over a range of frequencies from 100 Hz to 10 MHz. At high temperatures distinct Debye-type relaxation processes were observed, from which activation energies were determined for each system studied. In order to rationalise these data, in the context of actual ionic mobility mechanisms, atomistic simulation .techniques were used to elucidate the mechanisms and energetics of cation migration. Good correlation between experimentally determined and calculated energy barriers has been demonstrated. The results obtained from computer modelling confirm the nature of the processes responsible for the observed dielectric behaviour. Furthermore, they reveal the importance of framework relaxation effects in the facilitation of ion migration within a structure. This study demonstrates that short-range ionic mobility in framework silicates can be described using conventional (Debye-type) activated "hopping" models. A detailed interpretation of the mechanism of these processes has been possible by a combination of dielectric spectroscopy and computer modelling techniques. By

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Silica Tetrahedron and the Architecture of Silicate Minerals

With oxygen and silicon comprising approximately 85% of the atoms in Earth’s crust, most minerals in the crust include these two elements, and form the class of minerals called silicates. The basic building block of all silicate minerals is the silica tetrahedron, in which one silicon ion bonds with four oxygen ions. This arrangement of ions (coordination number of 4) is dictated by the ratio o...

متن کامل

Diverging electrophoretic and dynamic mobility of model silica colloids at low ionic strength in ethanol.

Electroacoustics and laser Doppler electrophoresis were employed to measure the mobility of surface-modified silica colloids in ethanol as a function of the ionic strength. Sufficiently low volume fractions were chosen to exclude effects of interparticle interactions. At high ionic strength, the electrophoretic mobility μ(e) is equal to the (electroacoustic) dynamic mobility μ(d) at 3.3 MHz. Ho...

متن کامل

Surface effects on the structure and mobility of the ionic liquid C6C1ImTFSI in silica gels.

We report on how the dynamical and structural properties of the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C6C1ImTFSI) change upon different degrees of confinement in silica gels. The apparent diffusion coefficients of the individual ions are measured by (1)H and (19)F pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy, while the intermolec...

متن کامل

Silylation of alcohols and phenols by HMDS in the presence of ionic liquid and silica-supported ionic liquids

In this research, different alcohols and phenols are subjected to the reaction with HMDS in the presence of ionic liquid and silica-supported catalysts. Silylation was accomplished under mild reaction conditions at room temperature in short reaction times and good to excellent yields.

متن کامل

Development of Lithium-Stuffed Garnet-Type Oxide Solid Electrolytes with High Ionic Conductivity for Application to All-Solid-State Batteries

Citation: Inada R, Yasuda S, Tojo M, Tsuritani K, Tojo T and Sakurai Y (2016) Development of LithiumStuffed Garnet-Type Oxide Solid Electrolytes with High Ionic Conductivity for Application to All-Solid-State Batteries. Front. Energy Res. 4:28. doi: 10.3389/fenrg.2016.00028 Development of lithium-stuffed garnet-Type Oxide solid electrolytes with high ionic conductivity for application to all-so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001